/Robot Performs Soft Tissue Surgery with Minimal Human Help

Robot Performs Soft Tissue Surgery with Minimal Human Help

Key idea: Performance of robot exceeds expert surgeons in preclinical models.

Original author and publication date: National Institute of Biomedical Imaging and Bioengineering – April 20, 2022

Futurizonte Editor’s Note: Robots outperform surgeons in preclinical models. Soon, robots will be the surgeons.

From the article:

What if your next surgery was planned and performed by a robot? A team at Johns Hopkins University is working to turn this idea into reality.

The concept of robot-assisted surgery is not new: several systems have already been developed and are being used to treat human patients. One example is the da Vinci surgical system, a laparoscopic device with robotic arms that are remotely controlled by a surgeon. This system is not autonomous—the robot does not perform any surgical tasks independently. Other robotic systems with higher levels of autonomy have been developed, such as the TSolution One®, which uses a robot to precisely cut bone according to a pre-specified plan. Existing autonomous robotic systems have largely been used to assist in surgeries involving hard tissues, such as drilling into bone for hip or knee implants. But these systems haven’t been used for soft tissue surgeries, which pose unique challenges, like accounting for unpredictable tissue motions that occur when the patient breathes, or size limitations of the surgical tools.

Now, NIBIB-funded researchers are developing an autonomous robot that can perform bowel surgery with minimal assistance from a surgeon. What’s more, the robot outperformed expert surgeons when compared head-to-head in preclinical models. A study detailing the development of this robot, which showcases the first known autonomous laparoscopic soft tissue surgery, was recently published in Science Robotics.

“Surgical outcomes are highly dependent on a surgeon’s skill and experience, and even one missed stitch in a bowel surgery could lead to internal leak and infection,” said Moria Bittmann, Ph.D., program director in the division of Discovery Science & Technology at NIBIB. “This preclinical work is an important step towards autonomous robotic surgery in soft tissues, which could provide increased efficacy and safety in human patients, independent of the surgeon.”

The robot, called STAR (for Smart Tissue Autonomous Robot), was developed by Axel Krieger, Ph.D., and his colleagues at Johns Hopkins University. So far, the robot has been developed to perform intestinal anastomosis—where two pieces of small intestine are sewn together to form a single, continuous section—under the supervision and guidance of a surgeon. Krieger explained how the robot performs the procedure: After the surgeon manually exposes the tissue edges, STAR takes images and develops a plan for suture placement based on the shape and thickness of the tissue. Once the human operator approves of the plan, STAR independently stitches the tissue together. If the tissue deforms or moves beyond a set threshold, STAR asks the surgeon if a new surgical plan should be created. This process is repeated until the robot completes the entire procedure.

READ the full article