/Is the Universe fundamentally unstable?

Is the Universe fundamentally unstable?

Key idea: Empty space itself, the quantum vacuum, could be in either a true, stable state or a false, unstable state. Our fate depends on the answer.

Original author and publication date: Ethan Slegel (Big Think) – October 11, 2022

Futurizonte Editor’s Note: It is time to understand that we are not just IN the universe. We ARE the universe.

From the article:   

here are certain properties about the Universe that for better or worse we take for granted. The laws of physics, we presume, are the same at other locations in space and other moments in time as they are in the here-and-now. The fundamental constants that relate various physical properties of our Universe are assumed to truly possess the same, constant value at every time and place. The fact that the Universe appears to be consistent with these presumptions — at least, to the limits of our observations — seems to support this view, placing great constraints on how much it’s possible these various aspects of reality have evolved.

Wherever and whenever we can measure or infer the fundamental physical properties of the Universe, it appears that they do not change over time or space: they are the same for everybody. But earlier on, the Universe underwent transitions: from higher-energy states to lower-energy ones. Some of the conditions that arose spontaneously under those high-energy conditions could no longer persist at lower energies, rendering them unstable. Unstable states all have one thing in common: they decay. And in one of the most terrifying realizations of all, we’ve learned that the fabric of our Universe itself may inherently be one of those unstable things as well. Here’s what we know, today, about how precarious our continued existence is.

In any physical system — that is, a system made up of particles that interact via one or more forces — there’s at least one way to configure them that is more stable than any other way to do it. This is what we call the lowest-energy state, or the ground-state, of a system.

What can you do when you’re stuck in a false minimum?

If you’re a classical system, the only solution is Sisyphean: you have to input enough energy into your system — irrespective of whether that’s kinetic energy, chemical energy, electrical energy, etc. — to “kick” that system out of the false minimum. If you can overcome the next energy barrier, you have the opportunity to wind up in an even more stable state: a state that takes you down closer to, and possible even all the way to, the ground state. Only in the true ground state is it impossible to transition down to an even lower-energy state.

That’s what’s true for a classical system. But the Universe isn’t purely classical in nature.

Rather, we live in a quantum Universe. Inherently quantum systems not only undergo these same types of reorganizations as classical systems — where inputting energy can kick them out of unstable equilibrium states — but they have another effect that they’re subject to: quantum tunneling.

READ the full article here