/Immobilized patients can now control devices with their brain

Immobilized patients can now control devices with their brain

Key idea:  Advanced brain interface technology could be used for motor rehabilitation of spinal cord injury and other conditions.

Original author and publication date: Aalto University – May 4, 2023

Futurizonte Editor’s Note: What if (just a question) an able-body person, let’s say, a soldier, also controls devices with their brain?

From the article:   

A new project at Aalto University is developing techniques that will enable immobilized patients to control devices using their brain activity. The project builds on the multi-locus transcranial magnetic stimulation (mTMS) technology developed at Aalto, adapting it into a brain–computer interface (BCI) that can help patients with neurological conditions.

‘Our aim is to enable patients to control various instruments with the power of thought, for example by imagining moving their arm. With personalized technology, we could use brain measurements to detect the intention to move the arm nearly in real time and apply that for motor rehabilitation,’ says Adjunct Professor Pantelis Lioumis, research fellow at Aalto University who is leading the new project. The BCI will combine mTMS with EEG technology of Bittium Biosignals, a partner in the research.

The EEG system allows real-time data streaming, which provides brain signals as input to the mTMS system. The mTMS system can then stimulate another region of the patient’s brain—thus, quite remarkably, activity in one part of the brain can be used to stimulate another. Because mTMS shifts the stimulation location electronically, specific areas can be rapidly and precisely activated, guided by the EEG readings.

The mTMS system, developed at Aalto as part of an international research project led by Aalto’s Professor Risto Ilmoniemi, can provoke limb twitches by stimulating the motor cortex.

‘A robot controlled by algorithms, instead of a therapist, will stimulate the brain, and it will be able to shift the stimulation location electronically and automatically depending on how the brain reacts. With the technology we’ve developed so far, it’s already possible to control the stimulation based on real-time brain signals,’ says Ilmoniemi.

Read here the complete article