/Ancient Black Holes Have Revealed a Mystery at the Edge of Time and Space

Ancient Black Holes Have Revealed a Mystery at the Edge of Time and Space

Key idea: A surprise discovery in the early universe has major consequences for the evolution of black holes and galaxies.

Original author and publication date: Becky Ferreira – May 11, 2022

Futurizonte Editor’s Note: Mystery, time, and space go together. And creation. And evil. (Ask Agustine)

From the article:

Scientists have shed light on a longstanding mystery about ancient supermassive black holes and the galaxies they inhabit by peering at incredibly luminous objects that existed in the early universe, just 500 million to one billion years after the Big Bang, reports a new study.

Black holes are mind-boggling regions of the cosmos that contain so much mass in such a small space that nothing, not even light, can escape their gravitational forces. Though there are unanswered questions about black holes of all sizes and ages, the supermassive black holes that inhabited the early universe are particularly inscrutable.

For instance, it’s unclear how these monster objects became so gargantuan—with some reaching masses one billion times that of the Sun—so early in the timeline of the universe. Moreover, scientists have long been puzzled about what slowed those early growth spurts and guided supermassive black holes into a more symbiotic development with their host galaxies. 

Now, scientists led by Manuela Bischetti, a postdoctoral researcher for Italy’s National Institute for Astrophysics at the Astronomical Observatory of Trieste, have made the unexpected discovery that extremely strong winds from early supermassive black holes likely slowed their growth. Bischetti and her colleagues observed 30 quasars, extremely luminous objects often found in the center of ancient galaxies, and identified these winds as an initial stage of “black hole feedback,” a process that is central to the development of modern galaxies, including our own Milky Way, according to a study published on Wednesday in Nature.   

“This result highlights for the first time that black hole feedback has an important role in shaping the early growth phases of both black holes and galaxies, and that the strength of black hole feedback may evolve with time,” Bischetti said in an email. “This provides key constraints for theoretical models of galaxy evolution.”

READ the full article